

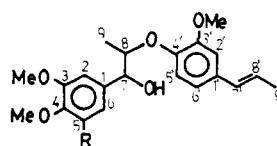
STEREOSELECTIVE SYNTHESIS OF 8,0,4'-NEOLIGNANS:  
( $\pm$ )-SURINAMENSIN AND ( $\pm$ )-VIROLIN

SUSANA A. ZACCHINO and HÉCTOR BADANO\*

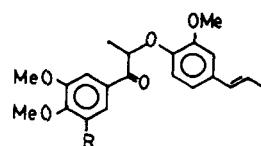
Instituto de Química Orgánica de Síntesis (CONICET-UNR),  
Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, 2000 Rosario, Argentina

Surinamensin (**1**) and virolin (**2**), the 8,0,4'-type of neolignans (**1**) corresponding to the *threo* series, have been isolated (2) from the leaves of *Virola surinamensis* (Rol.) Warb. Their presence in this plant has sparked considerable interest due to its strong activity against the penetration of cercaria of *Schistosoma mansoni* (2). It has also been reported that **1** showed antileukemic activity (3).

Because the reported syntheses (2, 4) of **1** and **2** afford the natural *threo* form in poor yield, we decided to study the stereoselective synthesis of these natural products by reduction of oxosurinamensin (**3**) and oxovirolin (**4**) prepared, in turn, by reaction of the bromoketones **5** and **6** with the sodium or potassium salt of isoeugenol, respectively (2, 5-7).


It is known that the reduction of ketones related to **3** and **4** with  $\text{NaBH}_4$  in  $\text{MeOH}$  produces predominantly the *erythro* form (8-10). We have recently shown, in a similar system, that by using  $\text{NaBH}_4$  in 2-propanol with 15-crown-5-ether, the *threo* isomer is obtained as the major product (11). In agreement with these observations, the reduction of **3** and **4** under the latter

conditions afforded a (9:1) mixture of *threo* and *erythro* ( $\pm$ )-**1** and ( $\pm$ )-**2**. The sequence described above represents a substantial improvement in the stereoselective synthesis of these interesting natural products and makes them available for further biological studies.


## EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.— Melting points were determined on an Ernst Leitz hotstage microscope and are uncorrected. The  $^1\text{H}$  nmr were recorded at 80.13 MHz and the  $^{13}\text{C}$ -nmr spectra at 20.15 MHz in the Fourier transform mode and in  $\text{CDCl}_3$  solutions. Chemical shifts are expressed on the TMS scale according to:  $\text{CDCl}_3 + 76.9$  ppm.  $J$  values are given in Hz; tlc was done on silica gel GF 254.

1-(3,4,5-TRIMETHOXYPHENYL)-2-(2'-METHOXY-4'-(*E*)-PROPYLPHENOXO) PROPAN-1-ONE (**3**).—The sodium salt of (*E*)-isoeugenol (266 mg) was added to a stirred solution of 1-(3,4,5-trimethoxyphenyl)-2-bromo propan-1-one (**5**), prepared according to published procedures (5, 6), (333 mg) in dry DMF (7 ml). After being stirred for 18 h, the mixture was diluted with  $\text{H}_2\text{O}$  (7 ml) and extracted with  $\text{Et}_2\text{O}$  ( $2 \times 15$  ml). The combined  $\text{Et}_2\text{O}$  extracts were washed with 0.2 N  $\text{NaOH}$  and  $\text{H}_2\text{O}$ , dried over anhydrous  $\text{Na}_2\text{SO}_4$ , and the solvent was then removed under vacuum. The residue was purified by preparative tlc (silica gel GF 254 in hexane- $\text{EtOAc}$ , 80:20), giving **3** (291 mg,



**1**  $\text{R}=\text{OMe}$   
**2**  $\text{R}=\text{H}$



**3**  $\text{R}=\text{OMe}$   
**4**  $\text{R}=\text{H}$



**5**  $\text{R}=\text{OMe}$   
**6**  $\text{R}=\text{H}$

69% yield) as a crystalline product mp 97-99° [lit. 100.3-100.6°(2)];  $^1\text{H}$  nmr ( $\text{CDCl}_3$ )  $\delta$  1.71 (3H, d,  $J$ =7.0, H-9), 1.83 (3H, d,  $J$ =6.0, H-9'), 3.83, 3.88, 3.91 (12H, s, 4 $\times$ OMe), 5.34 (1H, q,  $J$ =6.0, H-8), 5.80-6.40 (2H, m, H-7' and H-8'), 6.76-7.46 (5H, m, ArH); ms  $m/z$  386 ( $\text{M}^+$ , 4%), 195 (100), 191 (35), 164 (33), 163 (32), 107 (24), 91 (26), 77 (23).

( $\pm$ )-*THREO*-1-(3, 4, 5-TRIMETHOXYPHENYL)-2-(2'-METHOXY-4'-(E)-PROPYLPHENOXY)PROPAN-1-OL (**1**).—A solution of  $\text{NaBH}_4$  (31.17 mg) in dry 2-propanol (3 ml) was added to a stirred solution of 15-crown-5 ether (220 mg) in dry 2-propanol (2 ml); after 6 h, a solution of ketone **3** (105 mg) in dry MeOH (1.5 ml) was added, the mixture was then stirred for 2 h at room temperature, and  $\text{H}_2\text{O}$  and a few drops of HOAc were then added, and the mixture was extracted with  $\text{Et}_2\text{O}$  (4 $\times$ 10 ml). The combined  $\text{Et}_2\text{O}$  extracts were washed with a saturated aqueous solution of  $\text{NaHCO}_3$  and  $\text{H}_2\text{O}$ , dried ( $\text{Na}_2\text{SO}_4$ ), decanted and evaporated, affording **1** as a (9:1) mixture of *threo/erythro*. Pure **1** (77.2 mg, 72.56% yield) was obtained by preparative tlc [silica gel GF 254 in hexane-EtOAc (80:20)]; ir  $\nu$  max (film) 3500, 2970, 1610, 1525, 1390, 1270, 1150, 1050  $\text{cm}^{-1}$ ;  $^1\text{H}$  nmr ( $\text{CDCl}_3$ )  $\delta$  1.15 (3H, d,  $J$ =6.0, H-9), 1.86 (3H, d,  $J$ =5.5, H-9'), 3.87 (6H, s, 2 $\times$ OMe), 3.90 (3H, s, 1 $\times$ OMe), 4.15 (1H, m, H-8), 4.63 (1H, d,  $J$ =8.0, H-7), 5.70-6.23 (1H, m, H-8'), 6.39 (1H, d,  $J$ =16.0, H-7'), 6.89 (6H, m, ArH);  $^{13}\text{C}$  nmr ( $\text{CDCl}_3$ ) 16.4 (q, C-9), 17.9 (q, C-9'), 55.5 (q, C-3',  $\text{OCH}_3$ ), 55.9 (q, C-3 and C-5,  $\text{OCH}_3$ ), 60.5 (q, C-4,  $\text{OCH}_3$ ), 78.3 (d, C-7), 83.4 (d, C-8), 104.2 (d, C-2 and C-6), 109.1 (d, C-2'), 118.5 (d, C-5'), 118.7 (d, C-6'), 124.6 (d, C-8'), 130.2 (d, C-7'), 133.3 (s, C-1'), 135.5 (s, C-4).

1-(3,4-DIMETHOXYPHENYL)-2-(2'-METHOXY-4'-(E)-PROPYLPHENOXY) PROPAN-1-ONE (**4**).—(E)-Isoeugenol (0.74 ml), dry  $\text{K}_2\text{CO}_3$  (1.7 g), and 1-(3,4 dimethoxyphenyl)-2-bromo propan-1-one (**6**) (800 mg), prepared according to published procedures (5), were heated under reflux with stirring in dry butanone (16 ml) for 48 h. The solution was cooled, diluted with  $\text{H}_2\text{O}$  (20 ml), acidified, and extracted with  $\text{Et}_2\text{O}$  2 $\times$ 50 ml). The combined  $\text{Et}_2\text{O}$  extracts were washed with 1% NaOH (1 $\times$ 50 ml),  $\text{H}_2\text{O}$  (2 $\times$ 50 ml), dried ( $\text{Na}_2\text{SO}_4$ ) and concentrated to dryness. Crystallization of the crude product from MeOH yielded pure ketone **4** (632 mg, 60.6% yield) mp 120-123° [lit. 123-125°(2)];  $^1\text{H}$  nmr ( $\text{CDCl}_3$ )  $\delta$  1.70 (3H, d,  $J$ =6.0, H-9), 1.83 (3H, d,  $J$ =6.0, H-9'), 3.84, 3.91, 3.92 (9H, s, 3 $\times$ OMe), 5.39 (1H, q,  $J$ =6.0, H-8), 5.80-6.40 (2H, m, H-7' and H-8'), 6.73-7.86 (6H, m, ArH); ms  $m/z$  356 ( $\text{M}^+$ , 2%), 191 (15), 165 (100), 137 (9), 107 (8), 91 (18), 77 (27).

( $\pm$ )-*THREO*-1-(3,4-DIMETHOXYPHENYL)-2-(2'-METHOXY-4'-(E)-PROPYLPHENOXY)PROPAN-1-OL (**2**).—A solution of  $\text{NaBH}_4$  (110 mg) in dry 2-propanol (12.5 ml) was added to a stirred solution of 15-crown-5 ether (792 mg) in dry 2-propanol (6 ml); after 6 h, a solution of ketone **4** (356 mg) in dry MeOH (5.5 ml) was added, and the mixture was then stirred for 2 h at room temperature. Water and a few drops of HOAc were then added and the mixture was extracted with  $\text{Et}_2\text{O}$  (4 $\times$ 30 ml). The combined  $\text{Et}_2\text{O}$  extracts were washed with a saturated aqueous solution of  $\text{NaHCO}_3$  and  $\text{H}_2\text{O}$ , dried ( $\text{Na}_2\text{SO}_4$ ), decanted and evaporated, affording **2** as a (9:1) mixture of *threo/erythro*. Pure **2** (268 mg, 75% yield) was obtained by preparative tlc [silica gel GF 254 in hexane-EtOAc (80:20)]; ir  $\nu$  max (film) 3500, 2970, 1610, 1525, 1390, 1270, 1150, 1050  $\text{cm}^{-1}$ ;  $^1\text{H}$  nmr ( $\text{CDCl}_3$ )  $\delta$  1.15 (3H, d,  $J$ =6.0, H-9), 1.86 (3H, d,  $J$ =5.5, H-9'), 3.87 (6H, s, 2 $\times$ OMe), 3.90 (3H, s, 1 $\times$ OMe), 4.15 (1H, m, H-8), 4.63 (1H, d,  $J$ =8.0, H-7), 5.70-6.23 (1H, m, H-8'), 6.39 (1H, d,  $J$ =16.0, H-7'), 6.89 (6H, m, ArH);  $^{13}\text{C}$  nmr ( $\text{CDCl}_3$ ) 16.4 (q, C-9), 17.9 (q, C-9'), 55.5 (q, C-3, C-3' and C-5), 77.7 (d, C-7), 83.01 (d, C-8), 109.5 (d, C-2'), 110.7 (d, C-5), 110.9 (d, C-2), 118.3 (d, C-5'), 118.5 (d, C-6'), 119.5 (d, C-6), 124.3, (d, C-8'), 130.1 (d, C-7'), 132.9 (s, C-1'), 145.7 (s, C-4'), 147.8 (s, C-3), 148 (s, C-4), 149.6 (s, C-3'); ms  $m/z$  358 ( $\text{M}^+$ , 2%), 195 (8), 194 (19), 167 (68), 165 (73), 164 (100), 149 (15), 139 (44), 121 (18), 91 (29), 77 (30).

#### ACKNOWLEDGMENTS

This work was carried out with the financial support from CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas) and UNR (Universidad Nacional de Rosario).

We thank Professors Edmundo A. Rúveda and Manuel González Sierra for helpful discussions, and Dr. J.C. Oberti for the mass spectra.

#### LITERATURE CITED

1. O.R. Gottlieb, *Fortschr. Chem. Org. Naturst.*, **36**, 1 (1978).
2. L.E.S. Barata, P.M. Baker, O.R. Gottlieb, and E.A. Rúveda, *Phytochemistry*, **17**, 783 (1978).
3. M.M. De Oliveira and M.R.P. Sampaio, *Cienc. Cult.* (Sao Paulo), **32**, 104 (1980).
4. A.J. Zanarotti, *J. Chem. Res. (M)*, 2625 (1983).
5. W.C. Perry, M.V. Kalnins, and K.H. Deitcher, *J. Org. Chem.*, **37**, 4371 (1972).
6. D.J. Rao and F.A. Stuber, *Synthesis*, **4**, 308 (1983).
7. E. Adler, S. Delin, and G. Miksche, *Acta Chem. Scand.*, **20**, 1035 (1966).
8. A.F.A. Wallis, *Aust. J. Chem.*, **26**, 585 (1973).

9. K.V. Sarkar and A.F.A. Wallis, *J. Chem. Soc. Perkin Trans. I*, 1869 (1973).
10. J.E. Forrest, R.A. Heacock, and T.P. Forrest, *J. Chem. Soc. Perkin Trans. I*, 205 (1974).
11. A.C. Herrera Braga, S. Zacchino, H. Badano, M. Gonzalez Sierra, and E.A. Rúveda, *Phytochemistry*, **23**, 2025 (1984).
12. R.S. Glass, D.R. Deardorff, and K. Henegar, *Tetrahedron Lett.*, **21**, 2467 (1980).

Received 1 April 1985